12.1. Цикл прямоточного ВРД


В этом двигателе используется скоростной напор воздуха летательного аппарата для предварительного сжатия воздуха в диффузоре. Схема прямоточного ВРД показана на рис. 12.1.

Воздух со скоростью набегающего потока поступает в первую часть ВРД – диффузор, где за счет уменьшения скорости потока происходит увеличение давления воздуха. Далее воздух поступает в камеру сгорания двигателя, куда впрыскивается топливо и осуществляется его воспламенения за счет электрической искры. Процесс сгорания топлива организуется таким образом, чтобы давление и скорость потока газов не изменялись, поэтому канал камеры сгорания имеет небольшое расширение (учитывается увеличение объема газов с увеличением температуры в процессе сгорания топлива). После камеры сгорания газы поступают в сопловой канал, где они расширяются до атмосферного давления. В сопловом канале скорость потока газов возрастает, а при выходе газов из сопла с большой скоростью в атмосферу возникает реактивная сила, за счет которой и происходит движение летательного аппарата.

Приняв условно постоянным расход рабочего тела, а его свойства – соответствующими свойствам идеального воздуха, идеальный цикл такого ВРД можно показать в P,v- и T,s- диаграммах (рис. 12.2).

Изображенный цикл условно замкнут изобарным процессом отвода теплоты от рабочего тела 41. Это допущение объясняется тем, что газы, выходящие из двигателя, охлаждаются в атмосферной среде при постоянном давлении, а воздух поступает в двигатель при атмосферном давлении и температуре.

Цикл ВРД качественно такой же, как цикл ГТУ. В этом цикле диффузор выполняет роль компрессора (процесс 12), а сопло роль турбины (процесс 34).

Термический КПД ВРД, как и у цикла ГТУ, соответствует выражению

(12.1)


где ν=P2/P1 – степень повышения давления воздуха в диффузоре.

Из уравнения 12.1 следует, что чем больше степень повышения давления в диффузоре, тем больше КПД. Увеличить величину ν в ВРД можно за счет увеличения скорости набегающего потока воздуха. В свою очередь, эта скорость зависит от скорости движения самолета. Это легко показать, выразив отношение температур Т1 и Т2 из первого закона термодинамики применительно к диффузору

(12.2)


где с1 и с2 – скорости воздуха на входе и выходе из диффузора.

Из уравнения 12.2 получим величину степени повышения давления воздуха в диффузоре

(12.3)


Скорость воздуха на выходе из диффузора несоизмеримо мала по сравнению со скоростью воздуха на входе в диффузор, и температура воздуха на входе в диффузор – величина постоянная, поэтому величину ν определяет скорость воздуха на входе в диффузор с1.

Из выражений 12.1 и 12.3 следует, что термический КПД ВРД будет увеличиваться с увеличением скорости движения самолета.

Схема, приведенная на рис.12.1, соответствует ВРД для дозвуковых скоростей самолетов (600 – 800 км/ч). При сверхзвуковых скоростях движения самолетов ВРД должен иметь сверхзвуковой диффузор и сверхзвуковое сопло (рис. 12.3).

Внутренний относительный КПД ВРД весьма низок и не превышает 2 – 4 % для дозвуковых скоростей, при сверхзвуковых скоростях КПД может увеличиваться более чем в 2 раза.

Необходимо отметить, что современные сверхкритические ВРД имеют на входе в сопло конусные обтекатели воздуха (рис.12.4).

Обтекатель организует газодинамическую перестройку потока воздуха от сверхзвуковой скорости до дозвуковой скорости еще до входа в диффузор. Такая конструкция заменяет суживающуюся часть сверхзвукового диффузора, что позволяет избежать скачков уплотнения потока в канале диффузора, и соответственно, снижает необратимость адиабатного процесса сжатия воздуха, т.е. приводит к увеличению давления на выходе из диффузора по сравнению с конструкцией ВРД рис. 12.3.

Для запуска ВРД требуется набегающий поток воздуха, поэтому их запуск осуществляется с помощью специальных устройств: пороховые заряды для ракет, баллоны со сжатым воздухом или стартовые жидкостные реактивные двигатели для самолетов и вертолетов и т.п.

предыдущий параграф содержание следующий параграф